目的 研究3,6-脱水dapagliflozin的降血糖活性,确定SGLT2抑制剂中葡萄糖片段上3,6-脱水的修饰对降血糖活性的影响。方法 利用dapagliflozin作为原料制备3,6-脱水dapagliflozin,利用体外抑制hSGLT2和hSGLT1以及大鼠尿糖排泄实验2个模型来评价目标化合物的降血糖活性。结果 利用dapagliflozin作为原料经过5步制备了3,6-脱水dapagliflozin,总收率55.8%,使用1H-NMR、13C-NMR、HR-MS和IR进行了全面的结构表征,并利用NOESY进一步确定了其立体构型。活性测试表明,3,6-脱水dapagliflozin具有一定的降血糖活性,但是比dapagliflozin活性弱。结论 SGLT2抑制剂中葡萄糖片段上的3,6-脱水的修饰对活性具有不利的影响。
Abstract
OBJECTIVE To determine the effect of replacement of the glucose moiety by 3,6-anhydroglucose moiety in SGLT2 inhibitors on the hypoglycemic activity by studying the hypoglycemic activity of 3,6-anhydrodapagliflozin. METHODS Dapagliflozin was used as the starting material to synthesize 3,6-anhydrodapagliflozin. In vitro model of hSGLT2/hSGLT1 inhibition and in vivo animal model of rat urinary glucose excretion(UGE) test were used to evaluate the hypoglycemic activity of 3,6-anhydrodapagliflozin. RESULTS 3,6-Anhydrodapagliflozin was prepared from dapagliflozin in 5 steps with overall yield of 55.8%. The structure was fully characterized with 1H-NMR, 13C-NMR, HR-MS and IR, and the stereochemistry was further studied by NOESY. In vitro and in vivo evaluations found that 3,6-anhydrodapagliflozin was an SGLT2 inhibitor that was much less active than dapagliflozin. CONCULSION Replacement of the glucose moiety by 3,6-anhydroglucose moiety is detrimental to the hypoglycemic activity of SGLT2 inhibitors.
关键词
SGLT2抑制剂 /
3 /
6-脱水dapagliflozin /
合成 /
降血糖活性
{{custom_keyword}} /
Key words
SGLT 2 inhibitor /
3,6-anhydrodapagliflozin /
synthesis /
hypoglycemic activity
{{custom_keyword}} /
中图分类号:
R97
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WASHBURN W N. Development of the renal glucose reabsorption inhibitors: A new mechanism for the pharmacotherapy of diabetes mellitus type 2 [J]. J Med Chem, 2009, 52(7): 1785-1794.[2] DIAMANT M, MORSINK L M. SGLT2 inhibitors for diabetes: Turning symptoms into therapy [J]. Lancet, 2013, 382(9896): 917-918.[3] MENG M, ELLSWORTH B A, NIRSCHL A A, et al. Discovery of dapagliflozin: A potent, selective renal sodium-dependent glucose cotransporter 2(SGLT2) inhibitor for the treatment of type 2 diabetes [J]. J Med Chem, 2008, 51(5): 1145-1149.[4] NOMURA S, SAKAMAKI S, HONGU M, et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus [J]. J Med Chem, 2010, 53(17): 6355-6360.[5] ZHANG L Y, WANG Y L, XU H Q, et al. Discovery of 6-deoxydapagliflozin as a highly potent sodium-dependent glucose cotransporter 2(SGLT2) inhibitor for the treatment of type 2 diabetes [J]. Med Chem, 2014, 10(3): 304-317.[6] MISRA A P, MATHAD V T, RAJ K, et al. Modified iridoid glycosides as anti-implantation agents: Inhibition of cell adhesion as an approach for developing pregnancy interceptive agents [J]. Bioorg Med Chem, 2001, 9(11): 2763-2772.[7] LI W, QIU Z, WANG Y, et al. Synthesis, cytotoxicity, and hemolytic activity of 6′-O-substituted dioscin derivatives [J]. Carbohydr Res, 2007, 342(18): 2705-2715.[8] HU Y, YANG K Q, FENG F. The synthesis and antitumor activity of novel N- aryl(arylazo-1,3,4-thiadiazoles)sulfonamides derivatives [J]. Chin Pharm J(中国药学杂志), 2013, 48(12): 1026-1029.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(21302141);天津市科技支撑计划重点项目(10ZCKFSH01300);天津市自然科学基金资助项目(14JCQNJC129007)
{{custom_fund}}